Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155477, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38489890

RESUMO

BACKGROUND: The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE: This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS: The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor ß1 (TGF-ß1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS: Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION: This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.

2.
Phytomedicine ; 123: 155209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984123

RESUMO

BACKGROUND: Soothing the liver and regulating qi is one of the core ideas of traditional Chinese medicine (TCM) in the treatment of fatty liver. Si-Ni-San (SNS) is a well-known herbal formula in TCM for liver soothing and qi regulation in fatty liver treatment. However, its efficacy lacks modern scientific evidence. PURPOSE: This study was aimed to investigate the impact of SNS on metabolic associated fatty liver disease (MAFLD) in mice and explore the underlying molecular mechanisms, particularly its effects on lipid metabolism in hepatocytes. METHODS: The therapeutic effect of SNS was evaluated using in vivo and in vitro models of high-fat/high-cholesterol (HFHC) diet-induced mice and palmitic acid (PA)-induced hepatocytes, respectively. Molecular biological techniques such as RNA-sequencing (RNA-seq), co-immunoprecipitation (co-IP), and western blotting were employed to elucidate the molecular mechanism of SNS in regulating lipid metabolism in hepatocytes. RESULTS: Our findings revealed that SNS effectively reduced lipid accumulation in the livers of HFHC diet-induced mice and PA-induced hepatocytes. RNA-seq analysis demonstrated that SNS significantly down-regulated the expression of fatty acid synthase (Fasn) in the livers of HFHC-fed mice. Mechanistically, SNS inhibited Fasn expression and lipid accumulation by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK). Activation of AMPK suppressed the activity of the transcriptional coactivator p300 and modulated the protein stability of sterol regulatory element-binding protein-1c (SREBP-1c). Importantly, p300 was required for the inhibition of Fasn expression and lipid accumulation by SNS. Furthermore, SNS activated AMPK by decreasing adenosine triphosphate (ATP) production in hepatocytes. CONCLUSION: This study provided novel evidence on the regulatory mechanisms underlying the effects of SNS on Fasn expression. Our findings demonstrate, for the first time, that SNS exerts suppressive effects on Fasn expression through modulation of the AMPK/p300/SREBP-1c axis. Consequently, this regulatory pathway mitigates excessive lipid accumulation and ameliorates MAFLD in mice.


Assuntos
Proteínas Quinases Ativadas por AMP , Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fígado , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Metabolismo dos Lipídeos , Ácido Graxo Sintases/metabolismo , Colesterol/metabolismo , Estabilidade Proteica
3.
Nat Prod Bioprospect ; 13(1): 36, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804362

RESUMO

Quzhou Aurantii Fructus (QAF) has a long history as a folk medicine and food for the treatment of liver diseases. While our earlier study provided evidence of hepatoprotective properties contained within the flavonoids and limonins constituents in QAF, the potential preventative effects afforded by essential oil components present within QAF remains enigmatic. In this study, we prepared Quzhou Aurantii Fructus essential oil (QAFEO) and confirmed its anti-inflammatory effects on liver inflammation through experimentation on lipopolysaccharide and D-galactosamine (LPS/D-GalN) induced acute liver failure (ALF) mouse models. Using RNA-sequence (RNA-seq) analysis, we found that QAFEO prevented ALF by systematically blunting the pathways involved in response to LPS and toll-like receptor signaling pathways. QAFEO effectively suppressed the phosphorylation of tank-binding kinase 1 (TBK1), TGF-beta activated kinase 1 (TAK1), interferon regulatory factor 3 (IRF3), and the activation of mitogen activated kinase-like protein (MAPK) and nuclear factor-kappa B (NF-κB) pathways in vivo and in vitro. Importantly, QAFEO substantially reduced myeloid differentiation primary response gene 88 (MyD88)- toll-like receptor 4 (TLR4) interaction levels. Moreover, 8 compounds from QAFEO could directly bind to REAL, TAK1, MyD88, TBK1, and IRF3. Taken together, the results of our study support the notion that QAFEO exerts a hepatoprotective effect through inhibiting LPS-mediated inflammatory response.

4.
Biochem Biophys Res Commun ; 674: 10-18, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37393639

RESUMO

Ferroptosis is a type of nonapoptotic necrotic cell death characterized by iron-dependent lipid peroxidation. Saikosaponin A (SsA), a natural bioactive triterpenoid saponin extracted from Radix Bupleuri, has shown potent antitumor activity against various tumors. However, the underlying mechanism of the antitumor activity of SsA remains unclear. Here, we discovered that SsA induced HCC cell ferroptosis in vitro and in vivo. Using RNA-sequence analysis, we found that SsA mainly affected the glutathione metabolic pathway and inhibited the expression of cystine transporter solute carrier family 7 member 11 (SLC7A11). Indeed, SsA increased intracellular malondialdehyde (MDA) and iron accumulation, while it decreased the levels of reduced glutathione (GSH) in HCC. Deferoxamine (DFO), ferrostatin-1 (Fer-1) and GSH could rescue SsA-induced cell death, whereas Z-VAD-FMK was found ineffective in inhibiting SsA-induced cell death in HCC. Importantly, our result indicated that SsA induced the expression of activation transcription factor 3 (ATF3). SsA-induced cell ferroptosis and suppression of SLC7A11 are dependent on ATF3 in HCC. Moreover, we revealed that SsA induced ATF3 upregulation via activation of endoplasmic reticulum (ER) stress. Taken together, our findings support that ATF3-dependent cell ferroptosis mediated the antitumor effects of SsA, opening the possibility to explore SsA as a ferroptosis inducer in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Fator 3 de Transcrição , Neoplasias Hepáticas/tratamento farmacológico , Estresse do Retículo Endoplasmático , Glutationa , Ferro , Fator 3 Ativador da Transcrição/genética
5.
Front Pharmacol ; 13: 957829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147338

RESUMO

Background: Yunpi-Huoxue-Sanjie (YP-SJ) formula is a Chinese herbal formula with unique advantages for the treatment of diabetic cardiovascular complications, such as Diabetic cardiomyopathy (DCM). However, potential targets and molecular mechanisms remain unclear. Therefore, our research was designed to evaluate rat myocardial morphology, fat metabolism and oxidative stress to verify myocardial protective effect of YP-SJ formula in vivo. And then to explore and validate its probable mechanism through network pharmacology and experiments in vitro and in vivo. Methods: In this study, DCM rats were randomly divided into five groups: control group, model group, and three YP-SJ formula groups (low-dose, middle-dose, and high-dose groups). Experimental rats were treated with 6 g/kg/d, 12 g/kg/d and 24 g/kg/d YP-SJ formula by gavage for 10 weeks, respectively. Cardiac function of rats was measured by high-resolution small-animal imaging system. The cells were divided into control group, high glucose group, high glucose + control serum group, high glucose + dosed serum group, high glucose + NC-siRNA group, high glucose + siRNA-FoxO1 group. The extent of autophagy was measured by flow cytometry, immunofluorescence, and western blotting. Results: It was found that YP-SJ formula could effectively improve cardiac systolic function in DCM rats. We identified 46 major candidate YP-SJ formula targets that are closely related to the progression of DCM. Enrichment analysis revealed key targets of YP-SJ formula related to environmental information processing, organic systems, and the metabolic occurrence of reactive oxygen species. Meanwhile, we verified that YP-SJ formula can increase the expression of forkhead box protein O1 (FoxO1), autophagy-related protein 7 (Atg7), Beclin 1, and light chain 3 (LC3), and decrease the expression of phosphorylated FoxO1 in vitro and in vivo. The results showed that YP-SJ formula could activate the FoxO1 signaling pathway associated with DCM rats. Further experiments showed that YP-SJ formula could improve cardiac function by regulating autophagy. Conclusion: YP-SJ formula treats DCM by modulating targets that play a key role in autophagy, improving myocardial function through a multi-component, multi-level, multi-target, multi-pathway, and multi-mechanism approach.

6.
Math Biosci Eng ; 19(6): 5772-5792, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35603378

RESUMO

BACKGROUND: The newly identified betacoronavirus SARS-CoV-2 is the causative pathogen of the 2019 coronavirus disease (COVID-19), which has killed more than 4.5 million people. SARS-CoV-2 causes severe respiratory distress syndrome by targeting the lungs and also induces myocardial damage. Shenshao Ningxin Yin (SNY) has been used for more than 700 years to treat influenza. Previous randomized controlled trials (RCTs) have demonstrated that SNY can improve the clinical symptoms of viral myocarditis, reverse arrhythmia, and reduce the level of myocardial damage markers. METHODS: This work uses a rational computational strategy to identify existing drug molecules that target host pathways for the treatment of COVID-19 with myocarditis. Disease and drug targets were input into the STRING database to construct proteinɃprotein interaction networks. The Metascape database was used for GO and KEGG enrichment analysis. RESULTS: SNY signaling modulated the pathways of coronavirus disease, including COVID-19, Ras signaling, viral myocarditis, and TNF signaling pathways. Tumor necrosis factor (TNF), cellular tumor antigen p53 (TP53), mitogen-activated protein kinase 1 (MAPK1), and the signal transducer and activator of transcription 3 (STAT3) were the pivotal targets of SNY. The components of SNY bound well with the pivotal targets, indicating there were potential biological activities. CONCLUSION: Our findings reveal the pharmacological role and molecular mechanism of SNY for the treatment of COVID-19 with myocarditis. We also, for the first time, demonstrate that SNY displays multi-component, multi-target, and multi-pathway characteristics with a complex mechanism of action.


Assuntos
Tratamento Farmacológico da COVID-19 , Miocardite , Medicamentos de Ervas Chinesas , Humanos , Simulação de Acoplamento Molecular , Miocardite/tratamento farmacológico , SARS-CoV-2
7.
BMC Microbiol ; 21(1): 296, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715778

RESUMO

BACKGROUND: Ganoderma (Lingzhi in Chinese) has shown good clinical outcomes in the treatment of insomnia, restlessness, and palpitation. However, the mechanism by which Ganoderma ameliorates insomnia is unclear. We explored the mechanism of the anti-insomnia effect of Ganoderma using systems pharmacology from the perspective of central-peripheral multi-level interaction network analysis. METHODS: The active components and central active components of Ganoderma were obtained from the TCMIP and TCMSP databases, then screened to determine their pharmacokinetic properties. The potential target genes of these components were identified using the Swiss Target Prediction and TCMSP databases. The results were matched with the insomnia target genes obtained from the GeneCards, OMIM, DisGeNET, and TCMIP databases. Overlapping targets were subjected to multi-level interaction network analysis and enrichment analysis using the STRING, Metascape, and BioGPS databases. The networks analysed were protein-protein interaction (PPI), drug-component-target gene, component-target gene-organ, and target gene-extended disease; we also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: In total, 34 sedative-hypnotic components (including 5 central active components) were identified, corresponding to 51 target genes. Multi-level interaction network analysis and enrichment analysis demonstrated that Ganoderma exerted an anti-insomnia effect via multiple central-peripheral mechanisms simultaneously, mainly by regulating cell apoptosis/survival and cytokine expression through core target genes such as TNF, CASP3, JUN, and HSP90αA1; it also affected immune regulation and apoptosis. Therefore, Ganoderma has potential as an adjuvant therapy for insomnia-related complications. CONCLUSION: Ganoderma exerts an anti-insomnia effect via complex central-peripheral multi-level interaction networks.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Ganoderma/química , Distúrbios do Início e da Manutenção do Sono , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Redes Reguladoras de Genes/efeitos dos fármacos , Hipnóticos e Sedativos/química , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Farmacologia em Rede , Mapas de Interação de Proteínas/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/metabolismo
8.
J Ethnopharmacol ; 270: 113828, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33476712

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes is a serious chronic metabolic disorder, and type 2 diabetes mellitus (T2DM) accounts for more than 90% of all diabetes cases. Insulin resistance (IR) is an early symptom, typical feature and main pathogenesis of T2DM due to the combined effects of genetic and environmental factors. Current evidence shows that IR is mainly caused by nutrient overload, systemic fatty acid excess, fatty tissue inflammation, endoplasmic reticulum stress, oxidative stress and abnormal autophagy. Autophagy plays an important role in the development of IR and decreased autophagy activity can cause IR through various ways. AIM OF THE STUDY: Yunpiheluo (YPHL) decoction is a Chinese herbal formula with unique advantages for the treatment of T2DM. The aim of the present study was to investigate the regulatory mechanism of YPHL on the autophagy pathway in the skeletal muscle of IR Zucker diabetic fatty (ZDF) rats. METHODS: T2DM ZDF rats were treated with YPHL or transfected with SIRT1 adeno-associated virus. Serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), insulin resistance index (IRI) and skeletal muscle TG levels were detected in a T2DM ZDF rat model. The skeletal muscle morphology was observed by histological analysis and Oil Red O Staining. Autophagosomes were observed by transmission electron microscopy (TEM). The skeletal muscle morphology and fat deposition were observed by histological examination and Oil Red O Staining. A rat skeletal muscle IR cell model was established and transfected with SIRT1 overexpression plasmids. Cell apoptosis was observed by DAPI staining. SIRT1 levels in skeletal muscle tissues and cells were detected by qRT-PCR. The protein expressions of SIRT1, FOXo1, LC3B and P62 were detected by Western blotting. RESULTS: Large numbers of lipid droplets and swollen mitochondria were observed in the skeletal muscle in both model group and negative control (NC) group receiving blank plasmid. Autophagosomes were seen in the skeletal muscle of YPHL and SIRT1 groups, with no significant structural abnormality. In addition, the protein expression of LC3B was decreased and the protein expression of p62 was increased significantly in the model group as compared with the NC group. After intervention with YPHL and SIRT1 overexpression, the protein expression of LC3B was significantly increased and p62 was significantly decreased. However, there was no significant difference in cell apoptosis between the two groups. CONCLUSION: The SIRT1-FoxO1 autophagy pathway may play a significant role in the pathogenesis of IR. YPHL could increase the autophagy level by regulating the SIRT1-FoxO1 signaling pathway in the skeletal muscle and improving the lipid metabolism, thereby attenuating IR.


Assuntos
Autofagia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Resistência à Insulina , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos Zucker , Sirtuína 1/genética , Sirtuína 1/metabolismo
9.
PeerJ ; 8: e8604, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140303

RESUMO

BACKGROUND: Radix Astragali (Astragalus membranaceus var. mongholicus (Bunge)) and Coptis chinensis (Coptis chinensis var. angustiloba) are two commonly prescribed traditional Chinese herbs for diabetes. Astragalus Polysaccharide (AP) and Berberine (BBR) are active ingredients of these two herbs respectively and they are scientifically proved to have immunomodulatory and anti-inflammatory effects. They are also known for their antidiabetic potential by ameliorating insulin resistance (IR). AP and BBR have shown different advantages in treating diabetes according to previous reports. However, very few studies focus on the combined activities of the two potential antidiabetic ingredients. In this study, we discovered that reactive oxygen species (ROS) accumulated in IR-hepG2 cells and APBBR can decrease ROS level in model group significantly. We conjectured that APBBR can ameliorate IR in hepG2 cells by decreasing ROS level. In order to verify this hypothesis, we obtained phenotype and transcriptome information of IR-HepG2 cells and explore the underlying mechanism of the combination of AP and BBR(APBBR) activity on the relationship between ROS change in IR at whole-transcriptome level, so as to shed new light to efficacy and application of APBBR in treating diabetes. METHODS: The IR cell model was established with high-level insulin intervention. Glucose content, HepG2 cell viability as well as ROS level was detected to study the effect of IR-hepG2 cell phenotype. Unbiased genome-wide RNA sequencing was used to investigate alterations in experimental groups. Then, GO and KEGG functional enrichment was performed to explore the function and pathway of target genes. Venn analysis found out the differentially expressed lncRNAs that had close relationship with IR and ROS. Finally, we screened out candidate lncRNAs and these target genes to construct interaction network of differentiated lncRNA-miRNA-mRNA by according to the principle of competitive endogenous RNA (ceRNA). RESULTS: The biochemical experiments showed that APBBR administration could improve the proliferation activity of IR-HepG2 cells and decrease ROS level in model cells. The GO and KEGG functional enrichment analyses demonstrated several mRNAs remarkably enriched in biological processes and signaling pathways related to ROS production and IR progression. Interaction network suggest that APBBR ameliorates IR in HepG2 cells by regulating the expression of multiple genes and activating relevant signaling pathway to decrease ROS level. Thus, we demonstrated that APBBR ameliorated IR in hepG2 cells via the ROS-dependent pathway.

10.
J Ethnopharmacol ; 243: 111966, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31128151

RESUMO

BACKGROUND AND OBJECTIVE: Yunpiheluo (YPHL) decoction is a Chinese herbal formula with unique advantages for the treatment of type 2 diabetes mellitus (T2DM). The aim of the present study was to investigate changes in miRNA expression and downstream gene expression in Zucker diabetic fatty (ZDF) rats treated with YPHL to determine whether YPHL could be used as an adjuvant treatment of T2DM. METHODS: Serum and liver total cholesterol (TC) and triglycerides (TG) levels, insulin resistance index (IR) and differentially expressed miRNAs were detected in a T2DM ZDF rat model. miRNA target prediction was based on bioinformatic algorithms and dual luciferase reporter assay. Protein expression of genes in the insulin receptor signaling pathway was detected by Western blot. The IR cell model was established and the effects of lyophilized YPHL powder on the protein expressions were observed by transfecting specific miRNA mimics and inhibitors. RESULTS: The miR-29a-3p expression level was significantly increased in the liver of ZDF rats. Insulin receptor substrate 1 (IRS1) was the target gene of miR-29a-3p. IRS1 mRNA and protein expressions of IRS1, IRS1 (phospho S307), protein kinase B (Akt), Akt (phosphor ser473) and pyruvate dehydrogenase lipoamide kinase isozyme 1 (PDK1) were decreased significantly. miR-29a-3p over-expression decrease IRS1 and the others protein expressions in the HepG2 IR cell model while anti-miR-29a-3p showed the opposite result. The miR-29a-3p level was decreased, and the expressions of IRS1 mRNA and the above proteins were all increased after YPHL treatment. CONCLUSION: miR-29a-3p played a functional role in insulin receptor signaling in the liver of ZDF rats. YPHL decoction attenuated IR in T2DM probably by down-regulating or maintaining the miR-29a-3p level, increasing the expression of IRS1 mRNA and its phosphorylated proteins, and regulating the expression of insulin receptor signaling-related proteins. YPHL may prove to be an alternative treatment for T2DM.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Hipoglicemiantes/farmacologia , Resistência à Insulina/genética , MicroRNAs/genética , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Hipoglicemiantes/uso terapêutico , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Zucker
11.
RSC Adv ; 9(71): 41419-41430, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35541578

RESUMO

The lipid metabolism relationship between non-alcoholic fatty pancreas disease (NAFPD) and type 2 diabetes mellitus (T2DM) is poorly defined. We aim to identify novel T2DM-related lipid biomarkers in addition to previous studies and provide the evidence for elucidating the relationship between NAFPD and T2DM in a lipid perspective. In this study, multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) was used to investigate the potential discriminating lipid profile of the fasting plasma of 105 Chinese individuals (39 NAFPD patients, 38 T2DM patients and 30 healthy controls). Then multivariate statistical analysis combined with pathway analysis was performed to identify the lipid biomarker and explore the potential relationship of these two important diseases. The results described a marked reduction of plasmalogen and a significant 4-hydroxynonenal increase in the two diagnostic group, which indicated increased oxidative stress and peroxisomal dysfunction in patients. 60 discriminating metabolites were identified by multivariate statistical analysis of the lipidomics data. In addition, ingenuity pathway analysis (IPA) and a metabolic network constructed by prediction of IPA indicated that lipid metabolism, molecular transport, carbohydrate metabolism and small molecule biochemistry were correlated with disease progression. Our results revealed that the profile of plasma lipid alteration characteristic of NAFPD was similar to that of T2DM, especially during the period prior to the onset of T2DM.

12.
Front Pharmacol ; 10: 1508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920677

RESUMO

Insulin resistance (IR) is likely to induce metabolic syndrome and type 2 diabetes mellitus (T2DM). Gluconeogenesis (GNG) is a complex metabolic process that may result in glucose generation from certain non-carbohydrate substrates. Chinese herbal medicine astragalus polysaccharides and berberine have been documented to ameliorate IR, and combined use of astragalus polysaccharide (AP) and berberine (BBR) are reported to synergistically produce an even better effect. However, what change may occur in the GNG signaling pathway of IR-HepG2 cells in this synergistic effect and whether AP-BBR attenuates IR by regulating the GNG signaling pathway remain unclear. For the first time, we discovered in this study that the optimal time of IR-HepG2 cell model formation was 48 h after insulin intervention. AP-BBR attenuated IR in HepG2 cells and the optimal concentration was 10 mg. AP-BBR reduced the intracellular H2O2 content with no significant effect on apoptosis of IR-HepG2 cells. In addition, a rapid change was observed in intracellular calcium current of the IR-HepG2 cell model, and AP-BBR intervention attenuated this change markedly. The gene sequencing results showed that the GNG signaling pathway was one of the signaling pathways of AP-BBR to attenuate IR in IR-Hepg2 cells. The expression of p-FoxO1Ser256 and PEPCK protein was increased, and the expression of GLUT2 protein was decreased significantly in the IR-HepG2 cell model, and both of these effects could be reversed by AP-BBR intervention. AP-BBR attenuated IR in IR-HepG2 cells, probably by regulating the GNG signaling Pathway.

13.
Sci Rep ; 8(1): 4660, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549288

RESUMO

Shenfu Injection (SFI) is a classical Chinese medicine used to treat heart failure. Our previous study demonstrated that miRNAs underwent changes in rats with myocardial hypertrophy induced by abdominal aortic constriction. Interestingly, there was a significant change in miR-19a-3p, whose target gene is known to be associated with MEF2 signaling. However, whether and how SFI regulates miR-19a-3p in the treatment of myocardial hypertrophy has not been investigated. The purpose of the present study was to investigate the regulatory effect of SFI on miR-19a-3p in MEF2 signaling in the rat hypertrophic myocardium. We found that the miR-19a-3p expression level was significantly decreased in the hypertrophic myocardium, and MEF2A was the target gene of miR-19a-3p. The protein expressions of MEF2A, ß-MHC, BNP and TRPC1 were significantly increased in hypertrophic cardiomyocytes. MiR-19a-3p was up-regulated after SFI treatment, and the protein expressions of these genes were significantly decreased. In addition, miR-19a-3p over-expression in hypertrophic cardiomyocytes could decrease MEF2A mRNA and protein expressions, and anti-miR-19a-3p showed the opposite result. Our study provided substantial evidence that miR-19a-3p played a functional role in MEF2 signaling in myocardial hypertrophy. SFI attenuated cardiomyocyte hypertrophy probably through up-regulating or maintaining the miR-19a-3p levels and regulating the MEF2 signaling pathway.


Assuntos
Cardiomegalia/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , MicroRNAs/genética , Regulação para Cima , Regiões 3' não Traduzidas , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ratos , Transdução de Sinais
14.
Complement Ther Med ; 24: 55-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26860802

RESUMO

OBJECTIVES: Maintenance therapy for patients with advanced non-small-cell lung cancer (NSCLC) is an increasingly hot topic in the field of clinical NSCLC research. This study aimed to evaluate the effects of Traditional Chinese Medicine (TCM) treatment as maintenance therapy on time to progression (TTP), quality of life (QOL), overall survival (OS) and 1-year survival rate in patients with advanced NSCLC. METHODS: This study was conducted as a randomized, controlled, open-label trial. 64 non-progressive patients who responded to initial therapy were randomized 1:1 to the TCM arm (treated with herbal injection (Cinobufacini, 20ml/d, d1-d10), herbal decoction (d1-d21) and Chinese acupoint application (d1-d21), n=32) or to the chemotherapy arm (treated with pemetrexed (non-squamous NSCLC, 500mg/m(2), d1), docetaxel (75mg/m(2), d1) or gemcitabine (1250mg/m(2), d1 and d8), n=32). Each therapy cycle was 21 days. They were repeated until disease progression, unacceptable toxicity, or until the patients requested therapy discontinuation. The primary end point was TTP; the secondary end points were QOL, OS and 1-year survival rate. "Intention-to-treat" analysis included all randomized participants. RESULTS: TCM treatment prolonged median TTP for 0.7 months compared with chemotherapy, but it was not statistically significant (3.0 months vs. 2.3 months, P=0.114). Median OS time for TCM treatment did not offer a significant advantage over for chemotherapy (21.5 months vs. 18.8 months, P=0.601). 1-year survival rate of TCM treatment significantly improved than that of chemotherapy (78.1% vs. 53.1%, P=0.035). TCM treatment can significantly improve QOL when compared to chemotherapy as assessed by EORTC QLQ-C30 and EORTC QLQ-LC13 QOL instruments. CONCLUSIONS: TCM maintenance treatment had similar effects on TTP and OS compared with maintenance chemotherapy, but it improved patients' QOL and had higher 1-year survival rate. TCM Maintenance treatment is a promising option for advanced NSCLC patients without progression following first-line chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Medicina Tradicional Chinesa , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Análise de Sobrevida
15.
Fitoterapia ; 83(8): 1540-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22981504

RESUMO

Six new acylphloroglucinol derivatives, sampsonols A-F (1-6), were isolated from the petroleum ether extract of the aerial parts of Hypericum sampsonii. The structures and relative configurations of sampsonols A-F were elucidated by extensive spectroscopic analyses. All these compounds were tested for their in vitro cytotoxic and anti-inflammatory activities. Sampsonols A and B (1 and 2) showed significant cytotoxicity against four human tumor cell lines with IC(50) values in the range of 13-28µM, whereas sampsonols C and F (3 and 6) showed potent inhibitory activities against LPS-induced NO production in RAW 264.7 macrophages with IC(50) values of 27.3 and 29.3µM, respectively.


Assuntos
Hypericum/química , Floroglucinol/análogos & derivados , Floroglucinol/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Humanos , Macrófagos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Folhas de Planta/química , Caules de Planta/química
16.
Int J Mol Sci ; 13(5): 6521-6533, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754381

RESUMO

Drug resistance is a major factor for the limited efficacy of chemotherapy in gastric cancer treatment. Hypoxia-inducible factor-1α (HIF-1α), a central transcriptional factor in hypoxia, is suggested to participate in the resistance. Here, we identified a hypoxia-mimic (cobalt chloride) sensitive gastric cell line BGC-823 to explore whether diosgenin, an aglycone of steroidal saponins, can inhibit cancer cell invasion and survival of solid tumor in a hypoxic mimic microenvironment. We have shown that diosgenin is a potent candidate for decreasing the ability of invasion and survival in cobalt chloride treated BGC-823 cells. In addition, when combined with HIF-1α specific short hairpin RNA (shRNA), diosgenin can inhibit BGC-823 cells more effectively. The anti-invasion role of diosgenin may be related to E-cadherin, integrinα5 and integrin ß6. These results suggest that diosgenin may be a useful compound in controlling gastric cancer cells in hypoxia condition, especially when combined with down-regulated HIF-1α.


Assuntos
Cobalto/farmacologia , Diosgenina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Integrina alfa5/genética , Integrina alfa5/metabolismo , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Invasividade Neoplásica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
17.
Zhong Xi Yi Jie He Xue Bao ; 9(8): 894-900, 2011 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-21849151

RESUMO

OBJECTIVE: To observe the effects of ethanol extract of Rhizome Pinelliae Preparata on the intracellular pH value of human gastric cancer SGC7901 cells. METHODS: After coculturing SGC7901 cells with ethanol extract of Rhizome Pinelliae Preparata (1, 0.5, 0.25 and 0.125 mg/mL), cell viability was evaluated by chromatometry with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. Intracellular pH value of SGC7901 cells was measured in the monolayer by using the pH-sensitive fluorescent probe 2,7-bis-(2-carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester. The extracellular pH value of culture medium was measured by a pH211 Calibration Check Microprocessor pH Meter. Half-inhibitory concentration (IC(50)) of ethanol extract culture to SGC7901 cells was decided by the MTT method and expressions of vacuolar-H(+)-ATPase (V-ATPase) and Na(+)/H(+) exchanger isoform 1 (NHE1) mRNAs were examined by the method of fluorescence quantitative-polymerase chain reaction after 72 h of drug treatment. RESULTS: Ethanol extract of Rhizome Pinelliae Preparata at different concentrations significantly inhibited the proliferation of SGC7901 cells, lowered the intracellular pH values and heightened the extracellular pH values. The IC(50) of 72 h culture was 0.5mg/mL and it inhibited the expressions of V-ATPase and NHE1 mRNAs. CONCLUSION: Ethanol extract of Rhizome Pinelliae Preparata can lower down the intracellular pH value of SGC7901 cells. The mechanism may be related to inhibiting the expressions of V-ATPase and NHE1 mRNAs.


Assuntos
Adenocarcinoma/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Neoplasias Gástricas/fisiopatologia , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Pinellia/química , Rizoma/química , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
18.
Arch Pharm Res ; 34(6): 869-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21725805

RESUMO

Two new triterpenoid saponins, namely caraganoside C (1) and caraganoside D (2), were isolated from the seeds of Caragana microphylla. Their structures were elucidated on the basis of spectroscopic analyses, including homo- and hetero-nuclear correlation NMR experiments (COSY, HSQC and HMBC). Both 1 and 2 exhibited moderate inhibitory activity against NO production in LPS-stimulated RAW264.7 cells with IC(50) values of 26.4 µM and 32.2 µM, respectively. In addition, 1 showed weak cytotoxicity against MCF-7, HL-60, HCT116, and A549 cell lines.


Assuntos
Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Caragana/química , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Concentração Inibidora 50 , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Óxido Nítrico/biossíntese , Ressonância Magnética Nuclear Biomolecular , Saponinas/administração & dosagem , Saponinas/isolamento & purificação , Sementes , Triterpenos/administração & dosagem , Triterpenos/isolamento & purificação
19.
Phytother Res ; 25(4): 536-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20839213

RESUMO

Phytochemical investigation of the CH(2) Cl(2) extract of the aerial part of Hypericum sampsonii yielded two new prenylated xanthones, hypericumxanthone A and B, together with three known xanthones. Their structures were elucidated by analysis of physical and spectral (UV, IR, mass and NMR) data and comparison of spectroscopic data with those reported previously. All these compounds were evaluated for in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Two new compounds were also tested for their cytotoxicity against human breast (MCF-7), hepatoma (HepG2), colon (HT-29) and lung (A549) tumour cell lines. Two new compounds showed moderate antibacterial activities at minimum inhibitory concentrations (MIC) of 16 and 32 µg/mL, respectively, whereas the positive standard antibacterial drug, vancomycin, showed an MIC of 8 µg/mL. The other compounds were inactive against MRSA. In addition, hypericumxanthone B showed weak inhibitory activities against four human tumour cell lines.


Assuntos
Hypericum/química , Xantonas/isolamento & purificação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Análise Espectral/métodos , Xantonas/química , Xantonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...